Structure-function analysis of mouse Sry reveals dual essential roles of the C-terminal polyglutamine tract in sex determination.

نویسندگان

  • Liang Zhao
  • Ee Ting Ng
  • Tara-Lynne Davidson
  • Enya Longmuss
  • Johann Urschitz
  • Marlee Elston
  • Stefan Moisyadi
  • Josephine Bowles
  • Peter Koopman
چکیده

The mammalian sex-determining factor SRY comprises a conserved high-mobility group (HMG) box DNA-binding domain and poorly conserved regions outside the HMG box. Mouse Sry is unusual in that it includes a C-terminal polyglutamine (polyQ) tract that is absent in nonrodent SRY proteins, and yet, paradoxically, is essential for male sex determination. To dissect the molecular functions of this domain, we generated a series of Sry mutants, and studied their biochemical properties in cell lines and transgenic mouse embryos. Sry protein lacking the polyQ domain was unstable, due to proteasomal degradation. Replacing this domain with irrelevant sequences stabilized the protein but failed to restore Sry's ability to up-regulate its key target gene SRY-box 9 (Sox9) and its sex-determining function in vivo. These functions were restored only when a VP16 transactivation domain was substituted. We conclude that the polyQ domain has important roles in protein stabilization and transcriptional activation, both of which are essential for male sex determination in mice. Our data disprove the hypothesis that the conserved HMG box domain is the only functional domain of Sry, and highlight an evolutionary paradox whereby mouse Sry has evolved a novel bifunctional module to activate Sox9 directly, whereas SRY proteins in other taxa, including humans, seem to lack this ability, presumably making them dependent on partner proteins(s) to provide this function.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

I-43: Identification of SOX3 as an XX MaleSex Reversal Gene in Mice and Jumans

Background: Mammals utilise an XX/XY system of sex determination in which the Y-linked gene SRY (Sexdetermining region Y) exerts a dominant masculinising influence on sexual development. Sex chromosome homology and comparative sequence studies suggest that SRY evolved from the related SOX3 gene on the X chromosome, although there is no direct functional evidence to support this hypothesis. The ...

متن کامل

I-17: The Mechanism of Gonadal Sex Determination

Background In mammals, a single exon gene SRY on the Y-chromosome is activated in the XY gonadal primordium and initiates a cascade of molecular and morphological events leading to testicular differentiation. SRY-encoded protein (SRY) is a transcription factor harboring a HMG-box DNAbinding motif that upregulates SOX9, which encodes another transcription factor sharing the DNA binding motif wit...

متن کامل

Genetic Analyses Reveal Functions for MAP2K3 and MAP2K6 in Mouse Testis Determination1

Testis determination in mammals is initiated by expression of SRY in somatic cells of the embryonic gonad. Genetic analyses in the mouse have revealed a requirement for mitogen-activated protein kinase (MAPK) signaling in testis determination: targeted loss of the kinases MAP3K4 and p38 MAPK causes complete XY embryonic gonadal sex reversal. These kinases occupy positions at the top and bottom ...

متن کامل

The Genetics and Biology of Vertebrate Sex Determination

that the HMG domain has other important roles that are The plan seemed so simple. Having discovered Sry, the yet to be discovered. mammalian testis-determining gene on the Y chromoWhat functions can be ascribed to the remainder of some, and shown that it is able to cause male sex deterthe SRY protein? Two schools of thought have emerged mination in chromosomally female transgenic mice, the on t...

متن کامل

Genomic Analysis of the Pacific Oyster (Crassostrea gigas) Reveals Possible Conservation of Vertebrate Sex Determination in a Mollusc

Despite the prevalence of sex in animal kingdom, we have only limited understanding of how sex is determined and evolved in many taxa. The mollusc Pacific oyster Crassostrea gigas exhibits complex modes of sexual reproduction that consists of protandric dioecy, sex change, and occasional hermaphroditism. This complex system is controlled by both environmental and genetic factors through unknown...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 111 32  شماره 

صفحات  -

تاریخ انتشار 2014